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Abstract. Analyses of genomic DNA sequences have shown in previous works that base pairs are
correlated at large distances with scale-invariant statistical properties. We show in the present study
that these correlations between nucleotides (letters) result in fact from long-range correlations (LRC)
between sequence-dependent DNA structural elements (words) involved in the packaging of DNA in
chromatin. Using the wavelet transform technique, we perform a comparative analysis of the DNA
text and of the corresponding bending profiles generated with curvature tables based on nucleosome
positioning data. This exploration through the optics of the so-called ‘wavelet transform microscope’
reveals a characteristic scale of 100 − 200 bp that separates two regimes of different LRC. We focus
here on the existence of LRC in the small-scale regime (� 200 bp). Analysis of genomes in the three
kingdoms reveals that this regime is specifically associated to the presence of nucleosomes. Indeed,
small scale LRC are observed in eukaryotic genomes and to a less extent in archaeal genomes, in
contrast with their absence in eubacterial genomes. Similarly, this regime is observed in eukaryotic
but not in bacterial viral DNA genomes. There is one exception for genomes of Poxviruses, the only
animal DNA viruses that do not replicate in the cell nucleus and do not present small scale LRC.
Furthermore, no small scale LRC are detected in the genomes of all examined RNA viruses, with
one exception in the case of retroviruses. Altogether, these results strongly suggest that small-scale
LRC are a signature of the nucleosomal structure. Finally, we discuss possible interpretations of
these small-scale LRC in terms of the mechanisms that govern the positioning, the stability and the
dynamics of the nucleosomes along the DNA chain. This paper is maily devoted to a pedagogical
presentation of the theoretical concepts and physical methods which are well suited to perform a
statistical analysis of genomic sequences. We review the results obtained with the so-called wavelet-
based multifractal analysis when investigating the DNA sequences of various organisms in the three
kingdoms. Some of these results have been announced in B. Audit et al. [1, 2].
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1. Introduction

The relation between the primary structure of DNA and its biological function
is one of the outstanding problems in modern biology. There are many object-
ive reasons to believe that the functional role of DNA sequences is not only to
code for proteins but also to control the spatial structure of DNA in chromatin.
In eukaryotic cells, DNA is severely compacted when it folds into chromosomes.
The elementary structural unit of chromatin is the nucleosome [3, 4, 5, 6], which
consists of a histone protein core enveloped by DNA. At first level of organization,
the chromatin fiber is built from a linear array of nucleosomes [7, 8]. In the nuc-
leus, this fiber is further packed into a higher order structure known as the 30 nm
fiber [7, 9, 10, 11, 12, 13, 14]. This hierarchical folding of the DNA molecule is
likely to imply constraints on the molecule bending and flexibility properties and
on the capability of interacting with and of being anchored to protein matrix and
scaffold. So far, such constraints have been evidenced to favour the formation and
positioning of nucleosomes [15, 16, 17, 18, 19]. These structural properties depend
upon the local nucleotides composition and therefore can be seen as statistical
features of the DNA primary structure [20, 21, 22, 23, 24, 25, 26]. The actual
challenge is thus to find a way to extract these structural informations from an
appropriate reading of the DNA text. Since the different orders of packaging in the
hierarchical structural organization of DNA are implicated in the accessibility of
DNA sequence elements to trans-acting factors that control the processes of tran-
scription and replication [27, 28, 29, 30, 31, 32, 33, 34], there is actually a wealth
of structural and dynamical informations to learn in the primary DNA sequence
about how DNA works in a living cell.

At first glance, the primary DNA sequences look rather random in the sense that
they do not exhibit obvious regular features except some particular patterns like for
instance tandem repetitions. Besides the existence of those repeated segments (for
reviews see [35, 36]), the major part of the sequences seems hardly distinguishable
from uncorrelated or ‘Markov like’ short-range correlated random sequences. With
the specific goal to identify periodic repetitions as well as possible hidden peri-
odicities, Fourier and correlation function techniques have been extensively used
to process eukaryotic, eubacterial and archaeal genomes [23, 25, 37, 38, 39, 40].
Several oscillating patterns have been detected mainly when investigating the dis-
tributions of di- and tri-nucleotides. A 3-base periodicity is actually observed in
both prokaryotic and eukaryotic sequences reflecting the existence of strings of
codons in protein-coding regions [20, 23, 38]. Another well studied periodicity
is 10-11 bp oscillations that show up in all three kingdoms. Several interpreta-
tions have been raised concerning the origin of the observed periodicities since
significantly different periodicities have been identified close to the equilibrium
helical repeat for free DNA of 10.55 bp. The 10.8-11 bp period identified in coding
eukaryotic sequences might be the signature of encoded proteins [25, 41]. Indeed
the alternation of hydrophobic and hydrophylic amino acids in α-helices leads to a
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periodicity of about 3.5 amino acids in protein sequences [42]. There exists another
rather well identified periodicity of 10.2-10.4 bp that is unique to the eukaryotic
genomes. This periodicity is likely to be the consequence of the wrapping of DNA
around the histone octamer [20, 23, 25, 26, 37, 38, 43, 44, 45, 46, 47, 48], since a
slight but significant decrease of the helical repeat has been observed experiment-
ally in the nucleosome where the weight average of 8 independent measurements
yields a periodicity of 10.39 ± 0.02 bp/turn (see Table II in [49]). This positive
supercoiling is mainly seen in the distribution of some dinucleotides such as AA(=
TT), GC, and GG(= CC) to some lower extent. Most of these dinucleotides are
known to contribute to the intrinsic bending and flexibility properties of the DNA
double helix [15, 21, 50, 51, 52]. The periodic positioning of these dinucleotides
with a rather definite phase shift between them (e.g., about 5 bases between AA and
TT as well as in between AA and GC) contributes in a coherent manner to a global
curvature of DNA which is likely to amplify the affinity for the histone octamer
and therefore to favour the wrapping of DNA on the histone surface [6, 18]. Lar-
ger periodicities are further observed that may also be related to the hierarchical
organization of DNA via successive foldings of higher order structured nucleo-
protein complexes [24]. Actually, the 200- and 400-base periodicities identified in
eukaryotic sequences might correspond to the characteristic sizes of a nucleosome
or of a dinucleosome [38]. Other periodicities have been related to the segmented
structure of protein-coding sequences or DNA mobile elements [49, 53], or to the
periodic distribution of transcription factor sites [39].

In prokaryotes, a periodicity about 10.8-11 bp/turn has been observed that is
significantly above the equilibrium helical period [23, 25, 38]. It has been related
to unconstrained negative supercoiling which is essential to a number of processes
like DNA transcription, replication and condensation [54, 55, 56]. On the contrary
to the negative supercoiling revealed in eubacterial genomes, archaeal plasmids
were found to be positively coiled [57]. However, the recent discovery and stud-
ies of histone proteins in various archaea indicates that the binding of DNA to
these histones introduces some toroidal overwinding of DNA to form nucleosome
structures [40, 58, 59, 60].

Besides the investigation of hidden periodicities that emerge as statistically
significant as compared to the noisy background in the high frequency domain,
Fourier transform analysis and correlation function techniques have been also ap-
plied to investigate the scale-invariance properties of DNA sequences over a wide
range of scales extending from tens to thousand of nucleotides [61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71]. The possible relevance of scale-invariance and fractal
concepts to the structural complexity of genomic sequences has been the subject of
increasing interest [72, 73, 74, 75, 76]. Scale-invariance measurement enables us to
evidence particular long-range correlations (LRC) between distant nucleotides or
group of nucleotides that may or may not display hidden periodicities. During the
past ten years, there has been intense discussion about the existence, the nature and
the origin of LRC in DNA sequences. Besides Fourier and autocorrelation analysis,
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different techniques including mutual information functions [61, 71, 77, 78], DNA
walk representation [64, 75, 79, 80, 81, 82, 83, 84], Zipf analysis [85, 86, 87] and
entropies [88, 89, 90, 91] were used for statistical analysis of DNA sequences.
A lot of effort has been spent to adress rather struggling questions. In particular,
it was of fundamental importance to corroborate the fact that the reported LRC
really meant a lack of independence at long distances and were not just an artefact
of the compositional heterogeneity of the genome organization [68, 70, 71, 79, 82,
83, 84, 92]. Furthermore, since most of the models proposed in the literature are
based on the genome plasticity [61, 75, 93, 94, 95, 96, 97, 98], a rather crucial
issue which is still debated is the fact that long-range correlation properties might
be different for protein-coding (coding exons) and non-coding (introns, intergene)
sequences [61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 75, 80, 81, 83, 85, 86, 92, 99].

Actually, there were many objective reasons for this somehow controversial
situation. Most of the investigations of LRC in DNA sequences were performed
using different techniques that all had their own advantages and limitations. They
all consisted in measuring power-law behavior of some characteristic quantity, e.g.,
the fractal dimension of the DNA walk, the scaling exponent of the correlation
function or the power-law exponent of the power spectrum. Therefore, in practice,
they all faced the same difficulties, namely finite size effects due to the finiteness
of the sequence [96, 100, 101]. Actually, in these conditions, the definition of the
scaling range can be a rather delicate task which may strongly affect the estimate
of the scaling exponent. Moreover, some precautions are required when averaging
over many sequences in order to improve statistical convergence; in particular some
severe criticisms [69, 75, 83] were raised against the biological significance of Voss
study [65, 66, 67], since his results correspond to averages over complete gene-
bank database categories which are not of equal taxonomic rank. However, beyond
these practical problems, there is also a more fundamental theoretical restriction
since the measurement of a unique exponent which characterizes the global scaling
properties of a sequence fails to resolve multifractality [102], and thus provides
very poor information upon the nature of the underlying LRC (if there are any).
Actually, it can be shown that for a homogeneous (monofractal) DNA sequence,
the scaling exponents estimated with the techniques previously mentioned, can all
be expressed as a function of the so-called Hurst or roughness exponent H of the
corresponding DNA walk landscape [75, 102]. H = 1/2 corresponds to classical
Brownian motion, i.e., uncorrelated random walk. For any other value of H , the
steps ( increments) are either positively correlated (H > 1/2: persistent random
walk) or anti-correlated (H < 1/2: antipersistent random walk).

One of the main obstacles to LRC analysis in DNA sequences is the genu-
ine mosaic structure of these sequences which are well known to be formed of
‘patches’ (‘strand bias’) of different underlying composition [103, 104, 105, 106].
These patches appear as trends in the reconstructed DNA walk landscape which
are likely to introduce some breaking of the scale-invariance [64, 68, 75, 79, 82,
83, 84, 107]. One possibility is that these trends possess some characteristic length
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scale corresponding to a low frequency component that is not invariant with respect
to dilatations. Another possibility is that these trends do not have any characteristic
length scale either, but actually display some scale-invariance properties that dif-
fer from those of the basic fluctuations; in this case some cross-over should be
observed in the scaling regime, the largest scale fluctuations behaving differently
from those at small scales. There have been some phenomenological attempts to
differentiate local patchiness from long-range correlations using ‘ad hoc methods’
such as the so-called ‘min-max method’ [64] and the ‘detrended fluctuation ana-
lysis’ [108, 109]. Alternatively, the wavelet transform (WT) [110, 111, 112, 113,
114] has been proposed as a very powerful technique for fractal analysis of DNA
sequences [102, 115] (see also Ref. [116] where the WT is used as a tool for
visualizing regular patterns in DNA sequences). As already experienced in various
fields, the WT can be seen as a mathematical microscope that is well suited for
characterizing the scaling properties of fractal objects and this even in the presence
of some polynomial component [113, 117, 118, 119, 120]. By considering ana-
lyzing wavelets that make the microscope blind to low frequency trends, one can
reveal and quantify the scale invariance properties of DNA walks [102, 115, 121].
In a previous work, by applying the so-called wavelet transform modulus maxima
(WTMM) method [119, 120, 122] to the analysis of various genomic sequences
mainly selected in the human genome, we have found that the fluctuations in the
patchy landscapes of both coding and noncoding DNA walks are homogeneous
with Gaussian statistics [102, 115]. The main consequence of this result is the
justification of using a single exponent, namely the Hurst or roughness exponent
H , to characterize the underlying fractal organization of DNA sequences. From a
systematic analysis of human exons, CDS’s and introns, we have found that long-
range power law correlations are not only present in non-coding sequences but also
in coding ones somehow hidden in their inner codon structure [123]. Moreover in
both coding and non-coding sequences, the strength of these correlations appears to
increase with the GC content of the analyzed sequence [123]. (We refer the reader
to the work of Yeramian [124] for an alternative study of coding and non coding
regions based on the sequence-specific propensity for the thermal disruption of the
double-helix.)

In the present report, we first give an overview of the wavelet based methodo-
logy for genomic sequence analysis. Then we use the WT microscope to proceed
to a systematic investigation of coding and non-coding (intronic) DNA sequences.
Taking advantage of the availability of fully-sequenced genomes, we extend the
study of scale-invariance properties of DNA sequences on a much wider range of
scales than previously done. We show that there actually exists some crosss-over
scale about 100 − 200 bp that separates two different regimes of scale-invariance
properties corresponding to two different regimes of long-range power-law correl-
ations. Here we will mainly focus on the small-scale regime (� 200 bp) where the
simultaneous observation of LRC on DNA texts and on the corresponding bending
profiles generated with various curvature tables [51, 125], will be shown to provide
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a quite reliable signature of the existence of a nucleosomal structure [1, 2]. In a
forthcoming communication, we will concentrate on the large-scale regime (� 200
bp) which looks rather universal in the sense that it is present in all three kingdoms.
As an overall message of our wavelet based statistical analysis of genomic DNA,
we will discuss the observed LRC regimes as a direct manifestation in the primary
DNA sequences of the structural organization of DNA in chromatin. In contrast to
previous interpretations mainly based on mechanisms involved in genome dynam-
ics, we will further propose some understanding of these correlations in terms of
structural and dynamical constraints for chromosome packaging.

2. Theoretical Concepts and Methodology: Wavelet Analysis of Long-Range
Correlations in DNA Sequences

In this section, we use artificial sequences that mimic the distribution of purines
and pyrimidines along a DNA sequence, to illustrate the concept of long-range
power-law correlations and its relationship to scale invariance properties [64, 75,
102]. We also explain how to quantify LRC from the measurement of the so-called
Hurst-exponent H [119, 126]. We discuss the necessity of using wavelet analysis
to investigate LRC in real DNA sequences.

2.1. LONG-RANGE CORRELATIONS AND SCALE INVARIANCE PROPERTIES OF

SYMBOLIC SEQUENCES

To build synthetic DNA sequences displaying LRC, we use a method which will
not be described here and which is based on a two-valued ‘fractional auto-regressive
integrated moving average’ (FARIMA) process that has been extensively studied
by Audit et al. [127]. Let us consider two artificially built sequences. The first one
is a purely random sequence with equal probability for each of the nucleotides.
The second one is built under the constraint that the purine (or equivalently the
pyrimidine) positions be long-range correlated with a Hurst exponent H = 0.9.
Both these sequences are 262 144 bp long and contain 50% purines. First, we
use a bar code representation of the purine along the first 400 bp of the two se-
quences. Figures 1(a) and 1(b) can readily be distinguished by visual inspection.
Stretches of black (resp. white) meaning stretches of purines (resp. pyrimidines)
are clearly wider for the correlated sequence (Figure 1(b)) than for the uncorrelated
one (Figure 1(a)). Figure 1(b) seems to be more contrasted than Figure 1(a). This
qualitative difference is simply the signature of what we will refer to as persist-
ence [126, 128, 129]. When the positions of purines are positively correlated, if
there is a purine at a position, the probability to have a purine at the following
position is enhanced; long-range-correlations mean that this enhancement also de-
pends on the presence of purines at positions on the sequence on arbitrarily large
distance.
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Figure 1. Bar code representation of the purine/pyrimidine content for two artificial DNA
sequences. In (a), (c) and (e), we display the analysis of an artificial sequence generated
by uncorrelated trials with equal probability for the 4 nucleotides. In (b), (d) and (f), we
display the analysis of an artificial sequence obtained under the constraint that the purine
(or equivalently the pyrimidine) positions along the sequence be long-range correlated with
a Hurst exponent H = 0.9 and such that each nucleotide appears with the same probability.
In (a) and (b), for each sequence position corresponding to a purine, a black bar of width 1 bp
is drawn. In (c) and (d) (resp. (e) and (f)), the sequence has been divided into non overlapping
boxes of size 32 bp (resp. 512 bp) and we measure the purine content in each of these boxes.
If this concentration is greater than 50%, then a black bar of width 32bp (resp. 512 bp) is
drawn at the corresponding position. Notice that for the 6 pictures, the abscissa range is 400
bar widths to ensure that the visual effect obtained is not due to bars of different sizes. Going
from (e) to (c) to (a) (resp. (f) to (d) to (b)) is equivalent to zooming in the uncorrelated
(resp. long-range correlated) sequence with a black and white 400 pixels resolution camera.

To illustrate this particular structural property induced by these correlations and
its relation to scale invariance, let us perform the following visual experiment. Let
us decompose the sequence into non overlapping boxes of size w. If the purine
content in a box is greater than 50%, then a black bar of width w is drawn at the
corresponding position. This experiment amounts to doing a coarse graining on
the sequence, replacing each box by a purine or a pyrimidine according to the
purine content in that box. The results of this experiment are shown respectively in
Figures 1(c) and 1(d) for w = 32 bp and in Figures 1(e) and 1(f) for w = 512 bp.
When comparing these results to the previous ones (Figures 1(a) and 1(b)), one can
notice an important feature: for a given sequence, the three bar code representations
are statistically undistinguishable. This illustrates two important properties of the
sequences under analysis:
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1. Both the uncorrelated and the correlated sequences are scale invariant in the
sense that one cannot statistically distinguish the original sequence from those
obtained after a coarse graining as we have done here.

2. For the correlated sequence, the fact that it is scale invariant means that the
way purines are positioned is the same as the way boxes containing an ex-
cess of purines are positioned and this, whatever the box width. We talk about
long-range correlations (LRC) because the way the boxes are distributed is
persistent, that is to say that the correlations between 2 boxes separated by
n other boxes are independent of w and behave as ∝ n2H−2 (see Eq. (4)). Note
that the uncorrelated sequence is also scale invariant because it does not possess
correlations at any scale.

At this point, it is important to note that persistence does not mean that there
is no, or only little, variation of the purine concentration along the sequence. In
other words, persistence does not mean that in the representation of Figure 1, the
correlated sequences are all black, or all white (the sequences contain by construc-
tion an equal number of black and white boxes). This results from equation (2)
which shows that for any given box size w, the standard deviation σH(w) ∼ wH−1

increases with H . This characteristic feature is illustrated in Figure 2(b) where the
amplitude of oscillations of the purine content is larger than for the uncorrelated
sequence in Figure 2(a) (note that here σ (1) is the same for the two sequences). In
other words, persistence of the purine concentration means that it fluctuates more
smoothly (over short distances) than for uncorrelated sequences, but in the same
time with a larger amplitude (over large distances) around the mean value. Note
also that larger H values do not mean larger density values.

It is also important to note that LRC cannot be constructed with a Markov model
of finite size memory [130]. Markov chains yield correlation functions that decay
exponentially over some characteristic finite size. Hence an artificial sequence built
with a Markov model of order m would be undistinguishable from an uncorrelated
one as soon as the size of the box w � m. Therefore, when one reveals LRC in
DNA sequences, one evidences processes that structure objects of size w along the
genome in the same statistical manner at any scale w of observation.

2.2. QUANTIFICATION OF LONG-RANGE CORRELATIONS IN SYMBOLIC

SEQUENCES

In Figure 2, we propose a quantitative analysis of the fluctuations of purine con-
centration along the same two sequences we have already studied in the previous
section. In Figures 2(a), 2(b), 2(c) and 2(d), the purine concentration is plotted for
the same box sizes as those used in figure 1(c), 1(d), 1(e) and 1(f) respectively. For
the uncorrelated sequence, one clearly notices that the fluctuations around the mean
value 1/2 are much smaller for the largest window width w2 = 512 bp (Figure 2(c))
than for the smallest window width w1 = 32 bp (Figure 2(a)). In the case of the
long-range correlated sequence, one also notices that the fluctuations of the purine
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Figure 2. Fluctuations of the purine content CPu within non overlapping boxes of size w as a
function of the box position i for the same two artificial DNA sequences as in Figure 1. In (a)
and (b), w1 = 32 bp; in (c) and (d), w2 = 512 bp. In (e) and (f), CPu computed with w2 = 512
bp, is rescaled by (w1/w2)H−1 according to equation (2) with H = 0.5 (e) and H = 0.9 (f).
For the 6 pictures, the abscissa range is 400 box wide so that each curve is made of the same
number of points.

concentration decreases as the window width increases (Figures 2(b) and 2(d))
but to a much smaller extent. We take advantage of this difference to perform a
quantitative measure of the scale invariance properties.

For an uncorrelated sequence, the purine concentration measured in a box of
width w is simply the arithmetic mean of w independent and identically distributed
(i.i.d.) random variables. Its standard deviation σ (w) is thus of the form:

σ (w) = σ (1)√
w

. (1)

In the case of a sequence possessing scale invariance properties with a Hurst expo-
nent H , then the standard deviation reads [64, 75, 102, 126, 128, 129]:

σH(w) = σH(1)wH−1. (2)



42 B. AUDIT ET AL.

Figure 3. Scale-invariance analysis of purine concentration fluctuations. (a) log10(wσH (w))
vs log10 w for artificial sequences of length 10 kbp with Hurst exponent H = 0.5 (solid
line), 0.6 (dashed line) and 0.8 (dotted line) respectively. (b) log10(wσH (w)) − 0.6 log10 w
vs log10 w for the primary DNA sequence of Escherichia coli (solid line) and some average
over the human intron sequences of length larger than 800 (dashed line) (see Materials and
Methods). The solid straight lines corresponding to uncorrelated (H = 0.5) and long-range
correlated (H = 0.6 and H = 0.8) sequences are drawn to guide the eyes. Note that for the
sake of clarity, the curves in (a) and (b) have been vertically shifted in order to start at the same
ordinate for w = 10 bp.

As a visual check of this power-law behavior of the root-mean square (r.m.s.)
fluctuations of purine concentration, we have plotted in Figures 2(e) and 2(f) the
purine concentration computed for the box size w2 = 512 bp after some rescal-
ing by (w1/w2)

H−1. Once rescaled with the appropriate Hurst exponent value, the
purine concentration fluctuations obtained for both the uncorrelated (H = 0.5 in
Figure2(e)) and the long-range correlated (H = 0.9 in Figure 2(f)) sequences have
the same overall amplitude and are statistically undistinguishable from the corres-
ponding fluctuations obtained with boxes of smaller size in Figures 2(a) and 2(b)
respectively. Note that equation (1) reduces to equation (2) in the particular case
H = 1/2 characteristic of uncorrelated sequences. The quantitative characteriza-
tion of scale invariant properties is a straightforward consequence of equation (2).
Taking the logarithm of equation (2), one gets:

log10(wσH(w)) = H log10 w + log10 σH(1). (3)

So, when plotting log10(wσH(w)) as a function of log10 w, the fact that all the data
points fall on a linear curve enables us to diagnostic scale invariant properties.
Then, from measuring the slope of this straight line, one gets some estimate of
the exponent H . In Figure 3(a) is illustrated the estimate of the Hurst exponent
of an uncorrelated (H = 0.5) and of two long-range correlated (H = 0.6 and
H = 0.8) random sequences. For the three sequences, a straight line of slope H

provides a very good fit of the r.m.s. data. In Figure 3(b), we show a more readable
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presentation that we are going to use all along this manuscript for the analysis
of genomic sequences. By plotting log10(wσH(w)) − 0.6 log10 w versus log10 w, we
select H = 0.6 as the Hurst exponent value of reference for an horizontal linear
scaling behavior. This particular value actually corresponds to the LRC observed
for the set of sequenced human introns of length L � 800 bp [102, 115]. In Fig-
ure 3(b) are also reported for comparison the results obtained when investigating
the genome of Escherichia coli which are quite typical of what we have observed
with other eubacterial genomes. The data points remarkably fall on the straight line
corresponding to the Hurst exponent value H = 0.5 characteristic of uncorrelated
sequences. The straight line corresponding to H = 0.8 is drawn as the signature of
strongly correlated sequences. The existence of a large-scale regime (� 200 bp) of
strong LRC [1, 2] will be detailed in a forthcoming publication. An important fea-
ture is that we actually need to use oscillating boxes, i.e., wavelets, to perform this
standard deviation measure on real sequences as the mosaic stucture of genomic
DNA sequences may lead to severe bias [102, 115].

Now, if one is interested in the behavior of the correlation function C(n) between
nucleotides separated by a distance n, equation (2) implies that

C(n) ∝ σ 2
H(n) ∝ n2H−2, (4)

i.e. a power-law decrease as a function of the distance n with exponent 2H −
2 [61, 64, 99, 126]. Hence, the larger H(< 1), the weaker the power-law decrease
and the stronger the LRC.

2.3. QUANTIFICATION OF LONG-RANGE CORRELATIONS IN REAL DNA

SEQUENCES: ABOUT THE NECESSITY OF USING WAVELET ANALYSIS

2.3.1. Problems resulting from the Compositional Heterogeneity of Genome
Sequences

As pointed out in the previous section, a way to quantify LRC and scale-invariance
properties of symbolic sequences consists in using the so-called ‘variance method’.
This method amounts to compute the r.m.s. fluctuations of some nucleotide con-
centration measured in a box of width w and to look for some power-law beha-
vior (Eq. 2) from which one extracts an estimate of the Hurst exponent H . But
the variance method requires the experimental data to be stationary [126], a pre-
requisite which is absolutely not satisfied by the DNA sequences. As illustrated
in Figures 4(a), 4(c) and 4(e) for the sequence of the bacteriophage λ (see Mater-
ials and Methods) when using the ‘Purine’ coding rule, DNA sequences consist
of patches of different compositions, namely purine-rich regions which alternate
with pyrimidine-rich regions. This genuine mosaic structure of genomic DNA se-
quences may lead to severe bias in the estimate of H [64, 68, 75, 79, 82, 83, 84].
The fact that the average purine concentration over the first 20000 bp and the last
10000 bp of the bacteriophage λ is 54%, while it is only 46% from 22000 to 37000
bp, has a dramatic consequence in the variance calculation. This rather obvious
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breaking of stationarity leads to the presence of an additional constant term in
σ 2

H(w) which induces some departure from scale-invariance:

σH(w) = (
Aw2H−2 + B

)1/2
, (5)

i.e.,

wσH(w) = (
Aw2H + Bw2)1/2

. (6)

Thus, as shown in Figure 5, when plotting wσH (= σWT ) versus w in a logarithmic
representation, to estimate the exponent H from the slope of the experimental data
(Eq. 3), one does not observe a well defined straight line but rather a cross-over
from a scaling regime with H � 0.5 at small scale (w � 35 bp) where the first
term in the right-hand side of equation (5) is dominating, to a trivial regime H = 1
at large scale (w � 300 bp) as the signature of the non stationarity of the purine
concentration signal. Then if one proceeds blindly to a linear regression fit of the
data in the range 10 � w � 200, one gets a value of H � 0.6 which is totally
misleading. Actually if one rescales, like in Figures 2(e) and 2(f), CPu obtained for
w2 = 512 bp, by (w1/w2)

H−1 with this biased H value, one gets the purine concen-
tration fluctuations shown in Figure 4(e) which do not look statistically the same as
those observed at a smaller scale w1 = 32 bp in Figure 4(a): the non stationarity of
the purine concentration is much more pronounced whereas the overall amplitude
in each patches is clearly smaller.

2.3.2. A Solution: The Continuous Wavelet Transform

To investigate the scaling properties of DNA sequences and the possible existence
of LRC, one thus needs a mathematical tool that can master the non stationarity
of these genomic data. Actually such a technique does exist and is called the
continuous wavelet transform [110, 111, 112, 113, 114, 131]. The WT consists
in expanding signals in terms of wavelets which are constructed from a single
function, the analyzing wavelet ψ , by mean of translations and dilations. The WT
of a distribution µ is defined as [118, 119]:

Tψ [µ](x, w) = 1

w

∫ +∞

−∞
ψ

(
x − y

w

)
dµ(y), (7)

where x is the space parameter and w(> 0) the scale parameter. The continu-
ous wavelet transform (WT) can be seen as some generalization of the Fourier
transform in the sense that it provides a time-frequency (or space-scale) analysis
instead of a mere frequency(or scale) analysis. The analyzing wavelet ψ is gener-
ally chosen to be well localized in both space and frequency. Usually, ψ is only
required to be of zero mean for the WT to be invertible. In Figures 4(b) and 4(d)
are shown the WT of the DNA sequence of the bacteriophage λ as computed
at two different scales w = 32 bp and 512 bp, when considering the ‘Purine’
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Figure 4. Fluctuations of the purine content within non overlapping boxes (Figure 6(a)) of size
w as a function of the box position i for the DNA sequence of the bacteriophage λ (L = 48502
bp): (a) CPu for w = 32 bp; (c) CPu for w = 512 bp and (e) CPu for w = 512 bp after
being rescaled according to equation (2) with H = 0.6. Fluctuations of the corresponding
wavelet coefficients as computed with the Haar wavelet (Figure 6(b)): (b) �CPu for w = 32
bp; (d) �CPu for w = 512 bp and (f) �CPu for w = 512 bp after being rescaled according
to equation (8) with H = 0.5. In (c) and (e) the horizontal dashed segments correspond to the
patches of different average purine concentrations.

coding. To perform the WT calculation, we have used the so-called Haar wave-
let [110, 114] which is illustrated in Figure 6(b). When applying this piece-wise
constant analyzing wavelet to the positive-valued distribution µ of purines along
the bacteriophage λ DNA sequence, equation (7) simply amounts to compute the
difference of the purine concentrations in two juxtaposed boxes of size w/2 at the
position x. As shown in Figures 4(b) and 4(d), when doing this difference, one
cancels any possible departure of the local mean from the global mean over the
entire sequence. Indeed the global mean as well as the local mean of the wavelet
coefficients in the various patches of different purine compositions are now all
equal to zero. It is in that sense, i.e., by looking at the variations of concentration
instead of the concentration itself, that the WT restores stationarity: whatever the
scale w, the wavelet coefficients sustainly fluctuate about zero all along the entire
DNA sequence. Then, as shown in Figure 5, one can proceed to the analysis of the
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Figure 5. Scale-invariance analysis of the DNA sequence of the bacteriophage λ (L = 48502)
using the Purine coding: log10 σWT (w) − 0.6 log10 w vs log10 w. σWT (w) corresponds to the
variance of the wavelet coefficients computed at scales w (in bp units) with the zero-order g(0)

(smooth box: dotted line) and first-order g(1) (the first derivative of the Gaussian function:
solid line) analyzing wavelets illustrated in Figures 6(c) and 6(d) respectively. The results
obtained for our set of human introns with g(1) (dashed line) are shown for comparison. Note
that when using g(0), σWT (w) actually corresponds to wσH (w) (see equations (2) and (8)).

scale-invariance properties by investigating the power-law behavior of the r.m.s.
fluctuations of the wavelet coefficients as function of the scale w:

σWT (w) = σWT (1)wH . (8)

Note that when comparing equation (8) to equation (2), σWT (w) plays the role of
wσH(w) in equation (3). When using the Haar wavelet d(1) (Figure 6(b)), as well
as a smooth version given by the first derivative g(1) of the Gaussian function
(Figure 6(d)), as analyzing wavelets, one clearly remedies to the cross-over pre-
viously observed when using the inappropriate box function d(0)(Figure 6(a)) (or
the Gaussian function g(0)(Figure 6(c))). As shown in Figure 5, one recovers a well
defined scaling behavior from which one can extract the experimental estimate
H = 0.50±0.02 from a linear regression fit over the range of scales 10 � w � 200.
As a visual test of the relevance of this measurement, we have plotted in Figure
4(f), the wavelet coefficients computed at scale w2 = 512 bp, after being rescaled
by (32/512)H with H = 0.5 in order to be compared to the wavelet coefficients
computed at scale w1 = 32 bp in Figure 4(b). Both signals in Figures 4(b) and 4(f)
have the same overall amplitude and are statistically undistinguishable stationary
signals. These observations converge to the conclusion that when using the ‘Purine’
coding, the DNA sequence of the bacteriophage λ does not display any LRC since
the estimate of the Hurst exponent cannot be distinguished from the canonical
H = 1/2 value for uncorrelated sequences. Let us remind that we would have
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Figure 6. Set of analyzing functions that can be used in equation (7). (a) d(0): the box func-
tion; (b) d(1): the Haar wavelet; (c) g(0): the Gaussian function and (d) g(1): the first derivative
of the Gaussian function. Note that g(0) and g(1) can be seen as smooth versions of d(0) and
d(1) respectively.

reached the opposite conclusion, namely the existence of LRC with H � 0.6,
when using the unappropriate box-function d(0).

2.3.3. Mastering Nonlinear Mosaic Structures

We have just seen that with a first-order analyzing wavelet, one can easily remove
piece-wise constant behavior that may be superimposed to the fluctuations of pur-
ine concentration. Actually, nothing prevents the heterogeneity in composition of
DNA sequences to induce a more complex (possibly nonlinear) mosaic structure
that will further perturb the estimate of the scaling exponent H . At this point, let
us note that one can use analyzing wavelets of arbitrarily high order. Indeed, the
main advantage of using the WT for revealing and characterizing LRC, is its ability
to be blind to polynomial behavior, i.e. to low-frequency trends that can mask the
existence of scale-invariance properties. Hence, by considering analyzing wavelets
ψ(n) that have nψ vanishing moments [119, 120]:

∫ +∞

−∞
xmψ(n)(x)dx = 0, ∀m, 0 ≤ m < nψ, (9)

one can make our ‘WT mathematical microscope’ blind to polynomial behavior
up to degree nψ − 1, with the hope to master more elaborated mosaic structure
effects than the rather simple piece-wise constant bias observed in the fluctuations
of Purine concentration of the bacteriophage λ DNA sequence in Figures 4(a), 4(c)
and 4(e). In our pioneering study of the complexity of DNA sequences using the
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Figure 7. Wavelet transform analysis of the DNA sequence of the bacteriophage λ

(L = 48502 bp) when using the ‘A’ coding rule. The analyzing wavelet is the first-derivative
of the gaussian function g(1) (Figure 6(d)). (a) Space-scale representation provided by the
WT: Tg(1) (x, w) is coded, independently at each scale w, using 32 grey levels from white
(minxTg(1) (x, w)) to black (maxxTg(1) (x, w)). The arborescent structure of the wavelet rep-
resentation of the bacteriophage λ DNA sequence is typical of fractal signals that display
scale invariance properties. (b) Probability density functions ρw(T ) of wavelet coefficients for
the set of scales w = 12(
), 24(�) and 48(◦) in bp units. (c) log2(w

H ρw(wH T )) vs T for
the same data as in (b), when fixing H = 0.50. (d) Same representation as in (c) but when
considering the ‘Pnuc’ trinucleotide coding rule. The horizontal dashed lines in (a) correspond
to the investigated scales w = 12, 24 and 48 bp from bottom to top; at the scale w = 48 bp, the
wavelet coefficients are represented on the top of the corresponding horizontal dashed line.

WT [102, 115] we have mainly worked with the class of analyzing wavelets defined
by the successive derivatives of the Gaussian function:

g(N)(x) = dNe−x2/2

dxN
, (10)

for which nψ = N . In the present work, most of the results reported in the various
figures have been obtained with the first-order analyzing wavelet g(1)(x). Of course
we have checked that these results are robust when using higher-order analyzing
wavelets, in particular when using the so-called Mexican hat g(2) (data not shown).

2.3.4. Monofractality: An Essential Statistical Property of DNA Sequences

The WT is a mathematical technique that has been originally introduced for time-
frequency analysis of seismic data and acoustic signals [132, 133, 134]. In previous
works [102, 115], we have shown that from the space-scale WT representation
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Figure 8. Wavelet transform analysis of the DNA sequence of the chromosome 1 of Sacchar-
omyces cerevisiae (L = 230209 bp) when using the ‘A’ coding rule. The analyzing wavelet is
the first-derivative of the gaussian function g(1)(Figure (6(d))). (a) Space-scale representation
obtained when using the same grey level coding of the WT as in Figure 7(a). (b) Probability
density functions ρw(T ) of wavelet coefficients for the set of scales w = 12(
), 24(�),
48(◦). (c) Same as in (b) for the scales w = 192(�), 384(�) and 768(•) in bp units. (d)
log2(w

H ρw(wH T )) vs T for the three lowest scales shown in (b) when fixing H = 0.60 and
for the three largest scales shown in (c) when fixing H = 0.75. The horizontal dashed lines in
(a) correspond to the investigated scales w = 11, 24, 48, 192, 384 and 768 bp from bottom to
top.

of ‘DNA walks’, one can bring the experimental proof of the monofractal nature
of DNA walk landscapes. In Figure 7(a) is shown a 32-grey level coding of the
space-scale WT representation of the bacteriophage λ sequence when using the
‘A’ mononucleotide coding (see Materials and Methods) and g(1) (Figure 6(d))
as analyzing wavelet. A way to investigate the evolution of the statistics across
scale consists in computing the probability density function (pdf) ρw(T ) of wavelet
coefficient values at different scales. As shown in Figure 7(b), when increasing
w from 12 to 24 up to 48, the corresponding histograms become wider and wider
with a r.m.s. which behaves as predicted by equation (8) with a power-law exponent
H = 0.50 ± 0.02. Moreover, when rescaling the wavelet coefficients by the r.m.s.
value at the corresponding scales, all the data computed at different scales collapse
on a single curve as shown in Figure 7(c). This is the demonstration that the WT
pdfs satisfy the self-similarity relationship [102, 115]:

wH ρw(w
HT ) = ρ1(T ), (11)
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the hallmark of monofractality. The way the moments of ρw behave as a function
of w requires the knowledge of a single scaling exponent only, namely the Hurst
exponent H . This contrasts with multifractal signals for which a continuum of
scaling exponents is required to account for the evolution across scales of the shape
of the WT pdf [113, 119, 120]. A second important message brought by Figure
7(c) is the fact that in a semi-logarithmic representation, all the data fall on a same
curve which is well approximated by a parabola as predicted for Gaussian statistics.
Thus, as explored through the optics of the WT microscope, the basic fluctuations
in the spatial distribution of A nucleotides of the bacteriophage λ are likely to be
Gaussian. At this point, let us emphasize that these two experimental observations,
namely monofractality with H = 0.5 (no LRC) and Gaussian statistics, are quite
characteristic features of the bacteriophage λ genome sequence that are recovered
with all the mononucleotide, dinucleotide and trinucleotide coding rules used in
this work. As an illustration, the results obtained with the ‘Pnuc’ trinucleotide
coding associated to bending properties of nucleosomal DNA (see Materials and
Methods), are reported in Figure 7(d).

The progress made in sequencing programs allowed us to investigate completely
sequenced genomes [1, 2]. In Figure 8, we report the results of the WT analysis of
the Chromosome 1 (L = 230209 bp) of Saccharomyces cerevisiae (S.c.) when
using g(1) (Figure 6(d)) as analyzing wavelet. These results obtained with the ‘A’
coding rule are again quite representative of the whole set of data obtained when
using different mono-, di- and tri- nucleotide coding rules. When investigating the
evolution across the scales of the pdf of wavelet coefficients in Figures 8(b) and
8(c), one reveals the existence of a characteristic scale wc � 200 bp that separates
two different scaling regimes which both satisfy the self-similarity relationship
(11), provided one uses the scaling exponent value H = 0.57 in the scale range
10 � w � 100 and H = 0.75 in the scale range 200 � w � 1000 (Figure
8(d)). In the small-scale regime, the pdfs are very well approximated by Gaussian
distributions. In the large-scale regime, the pdfs of the wavelet coefficients of the
yeast chromosome 1 have fat stretched exponential like tails (Figure 8(d)). The fact
that the self-similarity relationship is satisfied in the small- as well as in the large-
scale regimes corroborates the monofractal nature of the yeast DNA sequences in
these two regimes.

3. Results

We report in this section the results of a wavelet based statistical analysis of the
scale-invariance properties of genomic sequences that belong to the three king-
doms, namely eukaryotic, eubacterial and archaeal genomes as well as sequences
of DNA and RNA viruses [1, 2]. To set the general framework of our study, we
will start investigating the 16 chromosomes of the Saccharomyces cerevisiae (S.c.)
which will allow us to perform a scaling analysis on a wide range of scales ex-
tending from tens to thousands of nucleotides. After exhibiting the overall general
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features that are more or less common to all genomes, we will specify the particular
issues we want to address in this study.

3.1. SACCHAROMYCES CEREVISIAE

The first completely sequenced eukaryotic genome Saccharomyces cerevisiae
provides an opportunity to perform a comparative wavelet analysis of the scale-
invariance and possible LRC properties displayed by each chromosome. When
looking at the global estimate of the r.m.s. of WT coefficients σWT (w) obtained
for each of the 16 yeast chromosomes, when using the ‘A’ mononucleotide coding
rule, one sees in Figure 9(a) that all present superimposable behavior, with notably
the same characteristic scale wc = 200 bp, that separates two different scaling
regimes. Note that the 16 yeast chromosomes also display other compositional
features [105]. At small scales, 10 � w � 200 (expressed in bp units), LRC are
observed as characterized by H = 0.57±0.03, a mean Hurst exponent value which
is significantly larger that the theoritical prediction H = 1/2 for uncorrelated
sequences. At large scales, 200 � w � 5000, stronger LRC with H = 0.82 ± 0.02
become dominant with a cutoff around 10000 bp (a number by no means accurate)
above which uncorrelated behavior is observed. In Figure 9(b) are reported the
results of some test of the robustness of the above observations when using different
mononucleotide coding rules. The first remarkable feature is that the data for the
‘A’ and ‘T’ codings are quite undistinguishable as well as the data for the ‘G’
and ‘C’ codings. This will justify that, in the following, we will systematically
present results corresponding to the average over the ‘A’ and ‘T’ codings on the
one hand and over the ‘G’ and ‘C’ codings on the other hand. While each of these
mononucleotide codings display a characteristic scale wc � 200 bp that separates
two scaling regimes as observed in Figure 9(a) for the ‘A’ coding, there is however
some difference between the ‘G’ (+‘C’) coding and the ‘A’ (+‘T’) coding. This
difference arises mainly in the small-scale regime (10 � w � 200) where the
estimate of the Hurst exponent turns out to be definitely smaller H = 0.53 ± 0.03
for the ‘G’ (+‘C’) coding than the value H = 0.57 ± 0.03 obtained with the
‘A’ (+‘T’) coding. The existence of a characteristic scale wc � 200 bp that sep-
arates two different monofractal scaling regimes corroborates the results reported
in Figure 8. The probability density functions (pdfs) of wavelet coefficient values
of the DNA sequence of the yeast chromosome 1 (L = 230209 bp), computed
at different scales using the ‘A’ coding rule (Figure 8(b) and 8(c)), are shown to
collapse on a single curve when rescaling the wavelet coefficients by wH , provided
one uses the scaling exponent value H = 0.60 in the scale range 10 � w � 100
and H = 0.75 in the scale range 200 � w � 1000 (Figure 8(d)). In the small-scale
regime, the pdfs are very well approximated by Gaussian distributions whereas
these pdfs exhibit fat stretched exponential like tails in the large-scale regime. A
similar change in the nature of the statistics of wavelet coefficients is observed with
all four mononucleotide codings as well as with di- and tri-nucleotide codings.
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Figure 9. Global estimate of the r.m.s. of WT coefficients of the 16 chromosomes of S.
cerevisiae : log10 σWT (w) − 0.6 log10 w is plotted versus log10 w . The analyzing wavelet is
the first-derivative of the Gaussian function g(1) (Figure 6(d)). (a) Comparative analysis of
the 16 chromosomes when using the ‘A’ mononucleotide coding. (b) Comparative analysis of
the ‘A’ (grey solid line), ‘T’ (grey dashed line), ‘G’ (black solid line) and ‘C’ (black dashed
line) mononucleotide codings with the ‘Pnuc’ (circles) and ‘DNase’ (triangles) trinucleotide
codings; the black dots correspond to a randomly shuffled Pnuc table (see text). (c) Com-
parative analysis of the ‘A’ (+‘T’) mononucleotide coding (solid line) with the ‘AA’ (=‘TT’)
dinucleotide coding (dotted line) and the ‘Aiso’ (=‘Tiso’) mononucleotide coding (dashed
line). In (b) and (c), the results correspond to averaging over the 16 chromosomes. For coding
rules see Materials and Methods.

As shown in Figure 9(b), a comparative wavelet analysis of the yeast DNA
sequences using the ‘Pnuc’ coding rule [51] reveals striking similarities with the
curves resulting from the mononucleotide coding rules, and this both in the small-
scale (H = 0.54 ± 0.01) and in the large-scale (H = 0.75 ± 0.02) regimes [1, 2].
To ensure that these observations are not simply due to a ‘recoding’ of the DNA
sequences, but rather to the proper values of roll angles used to determine the
bending profile of the axis of the double helix, we have randomly changed the
Pnuc table that maps trinucleotides to roll-angle values. The new table is obtained
using a Gaussian distribution of same mean, variance and symmetries as the ori-
ginal table. As shown in Figure 9(b), this results in the vanishing of the observed
LRC; now H = 0.50 ± 0.01 at scales w � 1000 bp, which strongly suggests that
these LRC are likely to reflect persistent structural scale-invariance properties. An
additional evidence that the ‘Pnuc’ trinucleotide coding is not a trivial recoding of
the DNA sequences is brought by the data obtained when using the DNase table
of curvature [125]. As shown in Figure 9(b), one notices a significantly weakening
of the LRC exponent observed in the large-scale regime(H � 0.6 with the DNase
coding instead of H � 0.8 with the ‘Pnuc’ coding), a result which is also true but
less flagrant in the small-scale regime. We will see in the following, that some sig-
nificant weakening is also observed in the small-scale regime of DNA sequences of
other eukaryotic sequences when using the ‘DNase’ coding rule. This demonstrates
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that on the contrary to what the intuition could tell us, the agreement between the
LRC properties observed with the ‘Pnuc’ coding and the mononucleotide codings
is not a trivial observation [1, 2].

To strengthen our interpretation of the observed LRC in terms of structural con-
straints, we have performed, in parallel, the wavelet analysis of DNA sequences
using some dinucleotide codings which are known to contribute to the intrinsic
bending and flexibility properties of the DNA double helix. As an illustration,
we report in Figure 9(c) the results obtained with the ‘AA’ (= ‘TT’) coding when
averaging over the 16 yeast chromosomes. When comparing to the results obtained
with the ‘Aiso’ (= ‘Tiso’) coding rule (i.e., A (T) that are not part of a dinucleotide
AA (TT)), one observes a clear weakening of the LRC properties with the ‘Aiso’ (=
‘Tiso’) coding, while the ‘AA’ (= ‘TT’) coding accounts for a major part of the LRC
observed with the ‘A’ and ‘Pnuc’ codings. Let us point out that this observation will
be the cornerstone of our analysis of LRC in the small-scale regime of genomic
sequences, in relation with the existence of nucleosomes.

We have extended this wavelet based analysis of the scaling properties of DNA
sequences to various fully sequenced eukaryotic, eubacterial and archaebacterial
genomes and also to viral DNA and RNA sequences [1, 2]. A general observation
is the existence of a characteristic scale wc � 100 − 200 bp that separates two
different monofractal scaling regimes whatever the coding rule used to digitize the
DNA sequences. In the large-scale regime (200 � w � 1000), when using the
‘Pnuc’ coding rule as well as the four elementary mononucleotide coding rules,
strong LRC (H � 0.8 ± 0.1) are systematically observed in most DNA sequences
whatever the organism, the kingdom and the coding or non-coding nature of the
sequence under study. To what extent this long-range correlated large-scale regime
is universal, is still the subject of current research. Here, we will mainly concentrate
our study on the small-scale regime (10 � w � 100−200 bp), with the specific goal
to demonstrate that the LRC observed with the ‘Pnuc’ coding rule provide a rather
original signature of the presence of nucleosomes. As control of this ‘nucleosomal
hypothesis’, we will systematically investigate a number of eubacterial genomes
for possible LRC.

For a sake of simplicity, we will systematically report the results of our wavelet-
based LRC analysis using the representation illustrated in Figure 3(b). The data
corresponding to different mono-, di- and tri-nucleotide coding rules will be com-
pared on the range of scales 10 � w � 400 (in bp units). When the curve corres-
ponding to some coding (e.g., ‘GG’ coding) will be missing or cut at very small
scales, this will mean that the density of the mono-, di- or tri-nucleotide under
consideration (e.g., GG) is too small for the investigation of the LRC properties
over this range of scales to make any sense. In order to minimize this possible lack
of statistics in the small-scale regime, we will mainly consider the ‘Aiso’ (=‘Tiso’),
‘Giso’ (=‘Ciso’), ‘AA’ (=‘TT’) and ‘GG’ (=‘CC’), instead of the corresponding
individual mono- and di-nucleotide codings. We will not carry out a systematic
investigation of the statistics of wavelet coefficients in the small-scale regime as
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Figure 10. Global estimate of the r.m.s. of WT coefficients of the human chromosome 21
(a-a′′), Drosophila melanogaster (b-b′′), Caenorhabditis elegans (c-c′′) and Arabidopsis thali-
ana (d-d′′) genomes: log10 σWT (w) − 0.6 log10 w is plotted versus log10 w . The analyzing
wavelet is the first-derivative of the Gaussian function g(1) (Figure 6(d)). (a-d) Comparative
analysis of the ‘A’ (+‘T’) mononucleotide coding (solid line) with the ‘AA’ (=‘TT’) dinuc-
leotide coding (dotted line) and the ‘Aiso’ (=‘Tiso’) mononucleotide coding (dashed line).
(a’-d’) Comparative analysis of the ‘G’ (+‘C’) mononucleotide coding (black solid line) with
the ‘GG’ (=‘CC’) dinucleotide coding (black dotted line) and the ‘Giso’ (=‘Ciso’) mono-
nucleotide coding (black dashed line). (a′′-d′′) Comparative analysis of the ‘Pnuc’ coding
(circles), the ‘DNase’ coding (triangles) with the ‘A’ (+‘T’) mononucleotide coding (solid
line) and the ‘G’ (+‘C’) mononucleotide coding (black solid line). For the coding rules, see
Materials and Methods.

illustrated in Figures 7 and 8 for the bacteriophage λ and S. cerevisiae respect-
ively (Preliminary results suggest that some departure from Gaussian pdfs may
sometimes be observed with some coding rules mainly for eukaryotic genomes).
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3.2. EUKARYOTIC GENOMES

In Figure 10 and Table I are reported the results of a wavelet transform analysis of
various eukaryotic genomes in the small-scale monofractal scaling regime. In Fig-
ure 10 are illustrated the data for the r.m.s. of WT coefficients of the human chro-
mosome 21 (Figure 10(a-a′′)), Drosophila melanogaster (Figure 10(b-b′′)), Caen-
orhabditis elegans (Figure 10(c-c′′)) and the Arabidopsis thaliana (Figure 10(d-
d′′)) genomic sequences using various mono-, di- and tri-nucleotide codings. The
considered analyzing wavelet is the first-derivative of the Gaussian function g(1)

(Figure 6(d)). In Table I are reported the estimates of the Hurst exponent H when
performing a linear regression fit of the data over the range 10 ≤ w ≤ 100. As
a first general observation, there exist significant LRC in every examined euka-
ryotic DNA sequence when using the ‘Pnuc’ coding rule (Figure 10(a′′-d′′)). For
example, one gets the following estimate of the Hurst exponent for the eukaryotic
sequences illustrated in Figure 10: H = 0.67 ± 0.04 (Human chromosome 21),
0.62 ± 0.03 (Drosophila melanogaster), 0.66 ± 0.06 (Caenorhabditis elegans) and
0.60 ± 0.07 (Arabidopsis thaliana), i.e. values which are all significantly larger
than the theoretical prediction H = 1/2 for uncorrelated sequences. Some LRC
are also observed when using the ‘DNase’ coding rule in Figure 10(a′′-d′′), but they
are systematically weaker than those identified with the ‘Pnuc’ coding rule. For the
sake of comparison, one gets the following estimates H = 0.59 ± 0.04 (Human
chromosome 21), 0.56±0.03 (Drosophila melanogaster), H = 0.59±0.05 (Caen-
orhabditis elegans) and 0.55±0.02 (Arabidopsis thaliana). Let us point out that, in
contrast to the above observation, the estimates obtained for the yeast genome are
quite comparable: H = 0.54 ± 0.01 with the ‘Pnuc’ coding and H = 0.54 ± 0.02
with the ‘DNase’ coding.

Another rather general observation is the fact that LRC are also observed with
each of the four mononucleotide codings (Figures 10(a′′-d′′)). However, quite sys-
tematically, the data obtained with the ‘Pnuc’ coding yield a larger (when they
are not in good agreement) estimate of the strength H of the LRC than the val-
ues obtained with the mononucleotide codings. This is particularly true in Figure
10(c′′) for the Caenorhabditis elegans genome, where the mononucleotide codings
provide results which are in remarkable agreement with the data obtained with
the ‘DNase’ trinucleotide coding but which are definitely smaller than the corres-
ponding ‘Pnuc’ data. The remarkable feature in this case is that the ‘AA’ (=‘TT’)
dinucleotide coding in Figure 10(c) reproduces quite well the ‘Pnuc’ data. Indeed
the estimate H = 0.63 ± 0.05 is the largest value obtained with this dinucleotide
coding overall our set of eukaryotic genome sequences. Let us emphasize that the
‘Aiso’ (=‘Tiso’) coding in Figures 10(a-d) strongly deviates from the ‘AA’ (=‘TT’)
coding and fails to account for the strength of the LRC exhibited with the ‘Pnuc’
coding. It is also rather clear in Figures 10(a’-d’), that the ‘Giso’ (=‘Ciso’) coding
does not participate to a large extent to the LRC revealed by the ‘Pnuc’ coding.
Note that when the density of ‘GG’ (= ‘CC’) dinucleotides allows us to investigate
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LRC, these LRC are quantitatively similar to the ones observed with the ‘Pnuc’
coding ( Figures 10(a’-d’)).

As a final observation, let us point out that, as reported in Table I, the main
features recognized in the results illustrated in Figure 10 are quite characteristic
of other eukaryotic genomes such as warm and cold blooded vertebrates as well
as invertebrates and plants. A systematic investigation of the WT coefficient pdfs
such as done in Figure 8 for the yeast chromosome 1, confirms a definite change
of shape of these pdfs for a characteristic scale wc which may be closer to 100 bp
for certain organisms than to 200 bp as observed for the yeast chromosomes.

3.3. EUBACTERIAL GENOMES

In Figure 11 and Table I are reported the results of a wavelet transform analysis
of the scale-invariance properties of complete eubacterial genomes that belong
to the following groups: Proteobacteria, Gram-Positive, Spirochaetes, Cyanobac-
teria, Thermotogales and Chlamydiae. In Figure 11 are illustrated the data for the
r.m.s. of WT coefficients of some selected complete eubacterial genomes that are
representative of the results obtained for other genomic sequences in these various
groups. The visualized range of scales is the same as for the eukaryotic sequences
in Figure 10, as well as the analyzing wavelet g(1). In Table I are reported the
estimates of the Hurst exponent H when performing a linear regression fit of the
data over the same range of scale as before, i.e., 10 ≤ w ≤ 100. In eubacterial
genomes, the characteristic scale wc that separates the small-scale and the large-
scale monofractal regimes is better defined and slightly greater than what we have
observed for common eukaryotic genomes, i.e., wc is more likely about 200 bp
(see also Figure 3). Note that this scale is about the size of the persistence length
of the DNA heteropolymer while the characteristic scale observed for eukaryotic
genomes is more compatible to the 100 − 150 bp long DNA regions which are
wrapped around histone proteins to form the eukaryotic nucleosomes [4, 6].

The main observation when examining the data in Figure 11, is that whatever the
coding rule used to digitize the eubacterial DNA sequences, one does not observe
any evidence of a possible existence of LRC. As one can check quantitatively in
Table I, the estimates of the Hurst exponent H all fall in the range 0.48 � H �
0.52 and therefore cannot be distinguished from the canonical value H = 1/2 for
uncorrelated sequences. Indeed, all the curves in Figure 11 are quite parallel, if not
almost superimposed, to the theoritical straight-line corresponding to H = 1/2.
The results reported in Figure 11(a′′-d′′), provide a remarkable demonstration that
whatever the coding tables used to modelling DNA local bending and flexibility
properties, one does not get any footprint of the possible existence of LRC. Both
‘Pnuc’ and ‘DNase’ codings yield similar quantitative estimates of H = 0.50 ±
0.02 than those obtained with the four mononucleotide codings. This contrasts with
what we have observed for eukaryotic sequences that do contain nucleosomes and
that systematically exhibit LRC in the small-scale regime.
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Table I. Values of the Hurst exponent H in the small-scale regime. This exponent is estimated
using our wavelet based method as described in Theoretical Concepts and Methodology. The
numbers in each line correspond to a linear regression fit of log10 σWT (w) versus log10 w, in the
10(20)−100 bp range, for the indicated sequence or set of sequences. The error bars are estimated
from the fluctuations of the local slope of the data in this range of scales. Each column indicates
the coding rule that is used (Materials and Methods). n.a., non attributed, when the statistical
sample is not large enough to allow reliable measurements

PNuc DNase AA Aiso A GG Giso G

(= T T ) (= Tiso) (+T ) (= CC) (= Ciso) (+C)

Homo sapiens 0.67 0.59 0.64 0.55 0.61 n.a. 0.54 0.59
±0.04 ±0.03 ±0.02 ±0.01 ±0.03 ±0.02 ±0.03

Homo sapiens 0.68 0.60 0.64 0.54 0.60 n.a. 0.54 0.60
Introns ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01

Homo sapiens 0.55 0.49 n.a. 0.50 0.53 0.54 0.51 0.54
Exons ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

Exons 0.53 0.50 0.50 0.50 0.53 n.a. 0.50 n.a.
GC%< 50 ±0.04 ±0.02 ±0.05 ±0.01 ±0.02 ±0.02

Exons 0.55 0.50 n.a. 0.52 0.53 0.56 0.53 0.58
GC%< 60 ±0.02 ±0.01 ±0.02 ±0.01 ±0.03 ±0.03 ±0.03

Danio rerio 0.61 0.58 0.58 0.58 0.60 n.a. 0.56 0.57
±0.05 ±0.03 ±0.05 ±0.03 ±0.03 ±0.03 ±0.06

Drosophila 0.62 0.56 0.60 0.59 0.63 n.a. 0.56 0.61
melanogaster ±0.03 ±0.03 ±0.05 ±0.02 ±0.05 ±0.01 ±0.06

Caenorhabditis 0.66 0.59 0.63 0.56 0.59 n.a. 0.57 0.62
elegans ±0.06 ±0.05 ±0.05 ±0.02 ±0.05 ±0.04 ±0.07

Arabidopsis 0.60 0.55 0.58 0.55 0.60 n.a. 0.54 0.58
thaliana ±0.07 ±0.02 ±0.05 ±0.01 ±0.03 ±0.02 ±0.07

Saccharomyces 0.54 0.54 0.54 0.55 0.57 n.a. 0.52 0.53
cerevisiae ±0.01 ±0.02 ±0.01 ±0.01 ±0.03 ±0.01 ±0.03

Herpesviridae 0.57 0.52 n.a. 0.53 0.53 0.57 0.53 0.59
±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01

Adenoviridae 0.57 0.53 0.55 0.54 0.53 n.a. 0.52 0.54
±0.01 ±0.02 ±0.04 ±0.02 ±0.02 ±0.04 ±0.02

Melanoplus 0.51 0.49 0.50 0.51 0.49 n.a. 0.49 0.51
sanguinipes ±0.01 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.01

Vaccinia virus 0.51 0.49 0.51 0.50 0.48 n.a. 0.51 0.48
±0.02 ±0.01 ±0.02 ±0.02 ±0.04 ±0.01 ±0.01

Positive-strand 0.53 0.52 0.51 0.53 0.50 n.a. 0.53 0.49
ssRNA viruses ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02

dsRNA viruses 0.55 0.49 n.a. 0.51 0.50 0.53 0.53 0.51
±0.01 ±0.02 ±0.01 ±0.03 ±0.03 ±0.03 ±0.01
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Table I. Continued

PNuc DNase AA Aiso A GG Giso G

(= T T ) (= Tiso) (+T ) (= CC) (= Ciso) (+C)

Human 0.62 0.50 0.53 0.51 0.49 n.a. 0.62 0.54
Spumaretrovirus 0.22 ±0.02 ±0.01 ±0.02 ±0.01 ±0.04 ±0.02

Retroviridae 0.57 0.50 0.57 0.51 0.53 0.61 0.56 0.54
±0.03 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01

Escherichia 0.49 0.48 0.50 0.50 0.51 0.50 0.50 0.50
coli ±0.02 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

Rickettsia 0.54 0.50 0.54 0.52 0.52 n.a. 0.52 0.51
prowazekii ±0.03 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.03

Helicobacter 0.51 0.51 0.52 0.52 0.52 n.a. 0.50 0.55
pylori 26695 ±0.05 ±0.02 ±0.04 ±0.01 ±0.04 ±0.03 ±0.03

Chlamydia 0.51 0.51 0.52 0.52 0.46 n.a. 0.51 0.49
trachomatis ±0.01 ±0.02 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01

Treponema 0.54 0.51 0.50 0.51 0.50 0.49 0.53 0.50
pallidum ±0.04 ±0.01 ±0.01 ±0.01 ±0.02 ±0.03 ±0.01 ±0.01

Mycoplasma 0.51 0.51 0.52 0.52 0.52 0.52 0.52 0.52
pneumoniae ±0.04 ±0.03 ±0.03 ±0.01 ±0.02 ±0.03 ±0.03 ±0.01

Bacillus 0.51 0.49 0.50 0.51 0.52 n.a. 0.50 0.51
subtilis ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.02 ±0.01

Synechocystis 0.51 0.47 0.50 0.50 0.50 0.49 0.49 0.51
PCC6803 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01

Thermotoga 0.52 0.49 0.52 0.51 0.51 0.52 0.51 0.50
maritima ±0.02 ±0.01 ±0.03 ±0.01 ±0.02 ±0.02 ±0.01 ±0.02

Aquifex 0.57 0.51 0.57 0.51 0.54 0.52 0.51 0.53
aeolicus ±0.04 ±0.02 ±0.03 ±0.01 ±0.03 ±0.02 ±0.01 ±0.02

Bacteriophage 0.50 0.50 0.50 0.52 0.49 n.a. 0.53 0.47
T4 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01

Bacteriophage 0.49 0.50 0.50 0.52 0.51 n.a. 0.51 0.50
SPBc2 ±0.01 ±0.03 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

Thermoplasma 0.56 0.50 0.52 0.50 0.54 0.52 0.51 0.51
acidophilum ±0.03 ±0.02 ±0.05 ±0.01 ±0.03 ±0.03 ±0.01 ±0.02

Methanococcus 0.56 0.52 0.55 0.51 0.55 n.a. 0.51 0.53
jannaschii ±0.05 ±0.03 ±0.03 ±0.01 ±0.04 ±0.02 ±0.02

Pyrococcus 0.52 0.51 0.53 0.51 0.53 0.50 0.51 0.52
horikoshii ±0.04 ±0.02 ±0.04 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02

Archaeoglobus 0.54 0.51 0.52 0.50 0.50 0.50 0.52 0.58
fulgidus ±0.05 ±0.02 ±0.05 ±0.01 ±0.03 ±0.02 ±0.01 ±0.02

Aeropyrum 0.53 0.51 n.a. 0.50 0.48 0.50 0.51 0.58
pernix ±0.01 ±0.01 ±0.01 ±0.03 ±0.01 ±0.01 ±0.02

Sulfolobus 0.54 0.50 0.53 0.51 0.53 n.a. 0.51 0.55
solfataricus ±0.03 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.02
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Figure 11. Global estimate of the r.m.s. of WT coefficients of Escherichia coli (a-a′′),
Bacillus subtilis (b-b′′), Synechocystis sp. PCC 6803 (c-c′′) and Thermotoga maritima
(d-d′′): log10 σWT (w) − 0.6 log10 w is plotted versus log10 w . The analyzing wavelet is the
first-derivative of the Gaussian function g(1) (Figure 6(d)). The various curves correspond to
the same mono-, di- and tri-nucleotide coding rules as in Figure 10.

Finally, let us mention that two eubacterial genomic sequences (among 29 ex-
amined sequences) exhibit rather strong LRC with the ‘Pnuc’ coding (Table I)
namely Buchnera sp. (H = 0.59 ± 0.02) and Aquifex aeolicus sp. (H = 0.57 ±
0.04). In three cases, weaker detectable LRC are identified like for Rickettsia pro-
wazekii (H = 0.54 ± 0.03) as reported in Table I.

3.4. VIRAL DNA GENOMES

Most dsDNA eukaryotic viruses replicate in the cell nucleus of their host in which
their genomic DNA molecules associate to the host histones to form nucleosomes
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Figure 12. Global estimate of the r.m.s. of WT coefficients of viral DNA genomes: average
over 7 complete genomes of Herpesviridae (a-a′′), average over 3 complete genomes of Aden-
oviridae (b-b′′), Vaccinia virus (c-c′′) and bacteriophage T4 (d-d′′). log10 σWT (w)−0.6 log10 w
is plotted versus log10 w . The analyzing wavelet is the first-derivative of the Gaussian function
g(1) (Figure 6(d)). The various curves correspond to the same mono-, di- and tri-nucleotide
coding rules as in Figure 10.

(for a review see [135]). In the line of our previous observations, it can then be
expected than the genome sequences of eukaryotic viruses present LRC in the
small-scale range. We have performed the wavelet based statistical analysis of
a number of dsDNA eukaryotic viruses which are known to form nucleosomes
in the cell nucleus, namely Herpesviruses [136] and Adenoviruses [137]. Small-
scale LRC are clearly detected in these genomes as shown in Figures 12(a-a′′)
and 12(b-b′′). In this case, LRC are clearly detected with the ‘Pnuc’ coding rule
(H = 0.57 ± 0.01) but not with the ‘DNase’ coding rule (H = 0.52 ± 0.02) as
illustrated in Figures 12(a′′) and 12(b′′). Note that as illustrated in Figures 12(a’)
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and 12(b’), the LRC observed with the ‘Pnuc’ coding are quite comparable to the
ones exhibited by the ‘AA’ (= ‘TT’) and ‘GG’ (=‘CC’) dinucleotide codings as
previously observed for eukaryotic genomes. In particular, one gets the follow-
ing estimates H = 0.56 ± 0.01 for Adenoviridae with the former coding and
H = 0.57 ± 0.02 for Herpesviridae with the latter coding. We have also investig-
ated the existence of LRC in Poxviruses. The Poxviridae constitute the only family
of animal viruses whose genome does not replicate in the cell nucleus, suggest-
ing that genomic DNA should not associate with the host cell’s histones. Indeed,
these exhibit H values very close to 1/2 (see Table I) in the small-scale range as
illustrated in Figure 12(c-c′′) for Vaccinia virus. In the case of the prokaryotic DNA
viruses, no LRC are detected in the 10−200 bp range, as examplified by the T4 and
the SPBc2 bacteriophages in Figure 12(d-d′′) and Table I. Note that no one of the
considered mono-, di- or tri-nucleotide codings do exhibit any evidence for LRC;
the reported estimates fot the corresponding H values in Table I do not deviate
significantly from the value H = 1/2 for uncorrelated sequences. These results
show that prokaryotic viral sequences present DNA texts, as well as DNA bending
profiles identical to those exhibited by their hosts genomes (Figure 11).

3.5. VIRAL RNA GENOMES

We have further extended our wavelet-based analysis to viral RNA genomes. The
bending profiles based on the Pnuc and DNases tables present no relevance for
single- and double-stranded RNA molecules. However, the analysis has been car-
ried out for RNA genome sequences as for DNA genomes in order to allow numer-
ical comparisons. We have examined several classes of single-stranded plus and
minus (data not shown) RNA genomes , as well as double-stranded RNA genomes.
The results reveal the absence (or very weak) LRC in these sequences as shown in
Figures 13(a-a′′) and 13(b-b′′) respectively. The numerical estimates of H in Table
I corroborate the visual estimates one can perform by a direct look at the curves in
Figures 13; these do not significantly deviate from the H = 0.5 straight-line for
ssRNAp and this for all codings. For dsRNA, similar estimates are obtained except
for the ‘Pnuc’ coding which exhibits weak LRC with H = 0.55 ± 0.01 (reminds
that the Pnuc table has no structural significance for dsRNA molecules). We have
also examined, but separately, the case of retroviruses since the retroviral genomes
are inserted, as double-stranded DNA, in the host genome. We see respectively in
Figure 13(c-c′′) and Figure 13(d-d′′) the results obtained for Spumaretrovirus and
for a group of several distantly related retroviruses. It appears clearly that on the
contrary to the other RNA viral genomes, the retroviral sequences exhibit LRC with
H = 0.57 ± 0.03 in the 10 − 100 bp range for the ‘Pnuc’ coding (which contrasts
with their total absence for the ‘DNase’ coding) as in their host genomic sequences.
Significant LRC are also observed with mono- and di-nucleotide codings, although
to a less extent with the ‘A’ (+ ‘T’) and ‘AA’ (= ‘TT’) codings.
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Figure 13. Global estimate of the r.m.s. of WT coefficients of viral RNA genomes: average
over 20 complete genomes of positive strand ssRNA viruses (a-a′′), average over 4 complete
genomes of double strand RNA viruses (b-b′′), complete genome of Spumaretrovirus (c-c′′)
and average over 6 complete genomes of retroviruses (d-d′′). log10 σWT (w) − 0.6 log10 w is
plotted versus log10 w . The analyzing wavelet is the first-derivative of the Gaussian function
g(1) (Figure 6(d)). The various curves correspond to the same mono-, di- and tri-nucleotide
coding rules as in Figure 10.

3.6. ARCHAEBACTERIAL GENOMES

Histones are known to exist not only in most eukaryotes but also in euryarchaeota, a
class of the prokaryotic domain (for a review see [60]). Despite the large difference
in euryarchaeotic and eukaryotic genome sizes, it appears that apparently similar
architectural motifs function to package DNA in both types of organisms, the ar-
chaeal nucleosomes being constituted by histone tetramers [58, 138]. Furthermore,
histone packaging of DNA has apparently imposed similar constraints on the gen-
omes of both types of organisms to direct nucleosomes positioning, involving for
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Figure 14. Global estimate of the r.m.s. of WT coefficients of Archaebacterial complete
genomes: Thermoplasma acidophilum (a-a′′), Methanococcus jannaschii (b-b′′), Pyrococcus
horikoshii (c-c′′) and Aeropyrum pernix (d-d′′). log10 σWT (w) − 0.6 log10 w is plotted versus
log10 w . The analyzing wavelet is the first-derivative of the Gaussian function g(1) (Figure
6(d)). The various curves correspond to the same mono-, di- and tri-nucleotide coding rules as
in Figure 10.

example the AA (=TT) dinucleotides [40]. These various observations prompted us
to examine the complete genomes of euryarchaeota identified to contain histones
(M. jannaschii, P. horikoshii, A. fulgidus) for the presence of LRC in the DNA text,
as well as in the ‘Pnuc’ and dinucleotide bending codings. We have also examined
the sequences of one euryarchaeota T. acidophilum and of two crenarchaeota (A.
pernix, S. solfataricus) which do not have histones.

As observed in Figure 14(a-c), mild LRC are detected with the ‘A’ (+ ‘T’)
mononucleotide coding in the genomes of T. acidophilum, M. jannashii and P.
horikoshii. Similar LRC are observed with the ‘AA’ (= ‘TT’) dinucleotide coding,
as well as with the ‘Pnuc’ coding, but not with the ‘Aiso (= ‘Tiso’) (see Table I).
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For example, for the M. jannashii genome, H = 0.55 ± 0.04 with the ‘A’ (+ ‘T’)
coding, H = 0.55 ± 0.03 with the ‘AA’ (= ‘TT’) coding and H = 0.56 ± 0.05
with the ‘Pnuc’ coding. On the contrary, the mononucleotide ‘G’ (+ ‘C’) as well
as the ‘GG’ (= ‘CC’) and ‘Giso’ (= ‘Ciso’) codings present a total absence of LRC.
For the genome of A. pernix, a contrasted situation is observed with the ‘G’ (+
‘C’) coding which presents strong LRC (H = 0.58 ± 0.02) but no LRC with ‘GG’
(= ‘CC’) (H = 0.50 ± 0.01). This result differs from what we have observed
with the eukaryotic genomes, for which the LRC obtained with ‘GG’ (= ‘CC’) are
always comparable to the LRC evidenced with the ‘G’ (+ ‘C’) coding as seen in
Figure 10(a’-d’). On the other hand, we observe little LRC with the ‘Pnuc’ coding
in the A. pernix genome (H = 0.53±0.01) which is consistent with the absence of
LRC with the ‘AA’ (= ‘TT’) and ‘GG’ (= ‘CC’) codings. The observation of LRC
with the ‘PNuc’ and ‘AA’ (= ‘TT’) codings in euryarchaeotic genomes that contain
histones is consistent with the observation that archaeal nucleosome packaging
involves sequence regularities similar to those of eukaryotic nucleosomes. How-
ever, similar small-scale LRC are also observed in the genome of T. acidophilum,
which does not contain histones. In addition, the observation of LRC between
‘G’ (+ ‘C’) nucleotides, and simultaneously of no LRC between ‘GG’ (= ‘CC’)
dinucleotides (in A. pernix, S. Solfataricus and A. fulgidus) reveals a new type
of correlations which is unprecedented in all eukaryotic and eubacterial genomes
examined in this work. Together, these particularities indicate that small-scale LRC
in archaebacterial genomic sequences present specific features that remain to be
investigated.

3.7. HUMAN INTRONS AND EXONS

We report in Figure 15, the results concerning the human introns and coding exons.
As shown in Figure 15(a-a′′), LRC are observed for intronic sequences with the
‘Pnuc’ coding (H = 0.68 ± 0.02) and mainly originate from the LRC induced by
the distribution of the dinucleotides AA and TT (H = 0.64±0.01). These data are
in remarkable agreement with the results reported in Figure 10(a-a′′) for the human
chromosome 21 which corroborates the fact that intronic sequences present LRC
properties strongly similar to those of intergenic regions (about 80 % of the human
genome corresponds to intergenic regions).

We have reproduced this analysis for human coding exons in Figure 15(b-
b′′). On the contrary to the conclusions of the pioneering statistical analysis of
DNA sequences [61, 62, 63, 64, 69, 75, 99], there exist LRC in the human exonic
sequences when one considers the ‘Pnuc’ coding. These LRC are not as strong
as in the intronic sequences but they are characterized by an average Hurst value
H = 0.55 ± 0.01, a value which is significantly larger than the theoretical predic-
tion H = 1/2 for uncorrelated sequences. We have shown in a previous work [123]
that the strength H of the LRC observed in both the human introns and exons def-
initely increases when increasing the (G+C) content of the sequence under study.
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Figure 15. Global estimate of the r.m.s. of WT coefficients of human introns and exons:
average over 2184 introns of length larger than 800 bp (a-a′′); average over 226 exons of
length larger than 600 bp (b-b′′); average over 82 exons of length larger than 600 bp and
with a G+C content less than 50% (c-c′′); average over 73 exons of length larger than 600 bp
and with a G+C content larger than 60% (d-d′′). log10 σWT (w) − 0.6 log10 w is plotted versus
log10 w . The analyzing wavelet is the first-derivative of the Gaussian function g(1) (Figure
6(d)). The various curves correspond to the same mono-, di- and tri-nucleotide coding rules as
in Figure 10.

If one concentrates our WT analysis on the subset of human exons with a G+C
content larger than 60% as shown in Figure 15(d′′), we observe LRC with the
‘Pnuc’ coding which are slightly larger than those obtained for the exons with a
G+C content smaller than 50% (Figure 15(c′′)). This effect is strongly enhanced if
one considers the ‘G’ (+ ‘C’) and ‘GG’ (= ‘CC’) codings which lead to the Hurst
exponent values H = 0.58 ± 0.03 and H = 0.56 ± 0.03 respectively. For exons
with a low G+C content, we see in Figure 15(c’), a total absence of LRC when
using the same codings. Let us point out that very weak LRC are evidenced in
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human exons with the ‘A’ (+ ‘T’) and ‘AA’ (= ‘TT’) codings (Figure 15(b-d)). The
understanding of the effect of the (G+C) content on the observed LRC is likely to
provide new insight into the mechanisms that govern the wrapping of DNA around
histones to form nucleosomes. Work in this direction is in current progress.

4. Discussion

4.1. A SMALL-SCALE LRC REGIME IS OBSERVED IN EUKARYOTIC SEQUENCES

The existence and the significance of long-range correlations in genome nucleotide
sequences is a long-debated problem which has been examined in a number of pre-
vious works on a large variety of DNA sequences [61, 62, 64, 65, 66, 67, 69, 70, 71,
99, 102, 115, 121]. In these studies, nucleotide sequences have been searched for
correlations between the individual nucleotides of these sequences (A, G, T, C), or
between particular ‘characters’ which can be encoded with these nucleotides (A or
G, T or C, etc.). The observed correlations were mainly interpreted in the context of
particular DNA informational contents like the coding/non-coding nature of DNA
segments (genes, exons) [61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 75, 80, 81, 83, 85,
86, 92, 99], or the presence of particular regularities resulting from the duplication-
mutation events associated to genome dynamic [61, 75, 93, 94, 95, 96, 97, 98]. In
the present work, we have enlarged the search for LRC in two different directions.
First, we have performed systematic genome-wide studies of LRC in complete
genomes over scale ranges which were as largely extended as possible (up to thou-
sands of base-pairs) and this in an overview of organisms belonging to the three
kingdoms, eukaryotes, eubacteria, archaebacteria, as well as in DNA and RNA
viral genomes. Second, we have analyzed these genomes in a new perspective:
our aim was to evidence LRC related to structural properties of the DNA mo-
lecule [139] involved in the processes of chromatin packaging associated to the
various mechanisms of gene expression, and during the successive stages of the cell
cycle. This implied not to search genome sequences only for correlations between
‘one-character’ motifs (DNA text), but rather between DNA segments or ‘words’
known to be associated to the structural properties of the DNA double helix. The
analyses were performed with the bending profiles obtained by coding the DNA
sequences with these structural motifs. They were carried out in parallel with the
study of the DNA text and they allowed us to evidence the existence of LRC
between the structure-associated DNA words, as well as between mononucleotides.

Among the various properties exhibited by these LRC, the first outstanding fea-
ture is the monofractal structure of the signals which allowed us to characterize the
LRC in a defined scale range by a single Hurst exponent (see Theoretical Concepts
and Methodology). This led us to reveal in all the genomes examined, the existence
of a characteristic scale of about 100 − 200 bp that separates two different regimes
of correlations. A first regime spans over a range of about 10 − 200 bp, which we
refer to as the small-scale regime. The second regime (large-scale) extends from
about 200 bp to much larger scales depending on the size of the sequence under
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study. As a general trait, the large-scale regime always presents very large values
of H , in general H > 0.75, and this with very few exceptions, in all the organ-
isms that we have analyzed in all three kingdoms. On the opposite to this robust
‘stability’ of the large-scale regime across the diversity of genomes, the small-
scale regime presents two different ranges of H values that depend on the class of
organisms. Indeed, in the small-scale regime, the eubacterial genomes cannot in
general be significantly distinguished from non-correlated sequences characterized
by H = 0.5. A totally different situation emerges from eukaryotic genomes. These
exhibit H values significantly larger than 1/2, that reveal the existence of LRC.
Furthermore, the presence of LRC in eukaryotic genomes and their absence in
eubacterial genomes are common features observed with both types of sequence
codings, i.e. the coding with single nucleotides, as well as the ‘structural coding’
with trinucleotides.

4.2. TO WHAT MECHANISMS OF THE EUKARYOTIC CELLS ARE RELATED THE

SMALL-SCALE LRC ?

We conjectured that the biological processes that might require the presence of
LRC in eukaryotic genomes are related to the structure and the dynamics of the
DNA molecule in chromatin. To test for this possibility, we searched for correl-
ations between DNA sequence-dependent motifs that were likely to play a role
in the structure of chromatin. In eukaryotes, the first level of compaction of the
DNA molecule consists in the solenoidal folding of the DNA molecule around
the histone octamer, which is favoured by the distribution of DNA bending sites
allowing a proper rotational orientation of the double helix relatively to the histone
protein surface [7, 8]. Accordingly, previous works have determined sequence-
dependent preferences for the bending of the DNA double helix around the core
histones [18, 19, 20, 21, 140, 141]. These allowed to set up a table of the bend-
ing values (roll angles) associated to all tri-nucleotides [51], the PNuc table that
we used to establish a ‘bending profile’ of the DNA sequence (see Materials and
Methods). These profiles were then examined with the wavelet-transform modulus
maxima method (WWTM) to search for the presence of LRC [1, 2, 102, 115] (see
Theoretical Concepts and Methodology). As a control, we systematically analyzed
the bending profiles obtained with the alternative DNase table [125] based on the
cutting of DNA by the DNase I enzyme. It does not present sequence specificity
but rather depends on the bending of DNA by the DNase I protein which differs
from the bending by histones.

Since these various determinations led to differents sets of bending values, it
was of great interest to compare the results of the wavelet-based analyses of the
corresponding bending profiles. We observed that for most eukaryotic sequences,
the bending profiles obtained with the Pnuc table (nucleosomal DNA) presented H

values similar to, or larger than those obtained with the DNA texts; on the opposite,
the H values corresponding to the DNase table were significantly smaller (see
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Table I). For eubacterial sequences, in the small-scale range, the H values obtained
with both the ‘Pnuc’ and the ‘DNase’ coding tables were similar to those of un-
correlated sequences. We also measured the H values of bending profiles obtained
with other bending tables. In all cases tested, they led to values which were smaller
than those obtained with the Pnuc table and generally larger than those obtained
with the DNase table (data not shown). The main conclusion from these results
is that LRC do exist in the ∼ 10 − 100 bp range between DNA bending sites in
eukaryotic sequences and that these LRC are mostly ‘extracted’ from the sequence
by the ‘Pnuc’ coding. On the opposite, LRC are poorly detected by the ‘DNase’
coding, as to some extent by the other types of codings of the DNA curvature.

Taken together, the studies of the eukaryotic and eubacterial genomes strongly
suggest that small-scale LRC are related to particular distributions of bending sites
in the ∼ 150 bp DNA regions which are wrapped around the core histones to form
the eukaryotic nucleosomes. This hypothesis can be tested by examining the LRC
between individual DNA bending sites that contribute in large part to the bending
of nucleosomal DNA, like for instance the AA and GG dinucleotides. We thus
examined the LRC in bending profiles obtained with the dinucleotides AA, and
compared them to the profiles obtained with the A’s nucleotides that are not part of
a dinucleotide AA (‘Aiso’) (all A’s belong to one and only one of these two subsets).
Similar analyses were carried out with GG and Giso. The results show that both AA
(= TT) and GG (= CC) dinucleotides do present strong LRC. Furthermore, these
are in general close to, or larger than the values measured with the corresponding
mono-nucleotide codings. For example, in the case of the human chromosome 21,
H = 0.64 ± 0.02 with the ‘AA’ (= ‘TT’) coding and H = 0.61 ± 0.03 with the ‘A’
(+ ‘T’) coding; similarly H = 0.59 ± 0.03 with the ‘G’ (+ ‘C’) coding. Consistant
results were obtained with other eukaryotic genomes although the GG distributions
could not always be examined by lack of abundance of this di-nucleotide (Figure 10
and Table I). On the opposite, the ‘Aiso’ (= ‘Tiso’) as well as the ‘Giso’ (= ‘Ciso’)
codings revealed significantly weaker LRC, respectively H = 0.55 ± 0.01 and
H = 0.54 ± 0.02.

The hypothesis that these LRC are associated to the presence of nucleosomes
can be further tested by searching for LRC in viral genomes. The wavelet based
analysis of dsDNA eukaryotic viral genomes was thus performed for a number
of viruses whose genomic DNA is known to form nucleosomes in the cell nuc-
leus, namely Herpesviruses [136] and Adenoviruses [137]. We also examined the
genomes of Poxviruses. These are the only animal viruses that replicate in the cyto-
plasm, which implicates that their genomic DNA molecule is not expected to form
nucleosomes. The results clearly reveal that all the examined viral genomes exhibit
the presence of LRC when using the ‘Pnuc’ coding table (e.g., H = 0.57 ± 0.01
for our set of Herpesviruses) to the exception of the Poxviridae (e.g., H = 0.51 ±
0.02 for Vaccinia virus). In parallel, we also examined the genomes of eubacterial
DNA viruses which showed a total absence of LRC (Figure 12(d-d′′) and Table I).
Overall, these results are in remarkable agreement with our hypothesis.
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To end up with this overview of complete genomes, we also examined the
sequences of viral single strand and double strand RNA genomes. In the line of
our hypothesis, these are not expected to exhibit LRC except in the case of the
retroviruses since their replication cycle includes the insertion of the double stran-
ded DNA copy of the viral genome into the host genome. This copy of viral DNA
is then associated with the host histones to form nucleosomes [142]. As shown
in Figure 13, the results of these analyses demonstrate that the examined RNA
genomes do not deviate significantly from uncorrelated sequences, except for the
retroviral genomes, which again strongly sustains our hypothesis.

Previous work has established the presence of LRC in coding sequences, in
particular in human coding exons which present a high (G+C) content [123]. To
conclude this study of LRC in biological sequences, we systematically reexamined
this question with the various types of codings used here. We see in Figure 15(a-
a’) that, as expected, the LRC exhibited by the human intronic sequences display
similar LRC than the overall genomic sequences for all coding rules (mononuc-
leotides, dinucleotides, Pnuc and DNase). We also see in Figure 15(b’) that overall
protein coding exons display moderate LRC when using the ‘Pnuc’ coding. We
also confirm that larger LRC are observed for high (G+C) containing exons but
interestingly, these are restrained to G and C mononucleotides (H = 0.58 ± 0.03)
and GG (= CC) dinucleotides (H = 0.56 ± 0.03), and to the bending profile ob-
tained with the ‘Pnuc’ coding (H = 0.55±0.02) as shown in Figure 15(d-d’). This
observation can be paralleled to the presence of LRC in viral DNA sequences that
are more pronounced with the GG (=CC) dinucleotides than with the AA (=TT)
dinucleotides. This particularity might be related to the constraints exerted on the
evolution of these sequences by their protein coding contents. This result extends
the possibility that the formation of nucleosomes in exonic regions can involve
sequence patterns that differ from those of intronic regions, as already suggested
by Baldi and collaborators [22].

4.3. DO LRC BETWEEN DNA BENDING SITES RESULT FROM A SIMPLE

RECODING OF THE DNA TEXT ?

An important point concerns the possibility that the LRC between DNA bending
sites might be a trivial observation. In effect, one might argue that since LRC exist
between all mono-nucleotides (DNA text), then any arrangement of nucleotides
(words) should present as well similar LRC. The analyses with the various bending
tables demonstrate that, on the contrary, the choice of particular words can reveal
strong LRC, as evidenced with the ‘Pnuc’ coding rule, while other types of coding
do not (e.g., ‘DNase’ coding). This is further evidenced by the fact that the A nucle-
otides exhibit strong LRC when they belong to the AA di-nucleotide subgroup, but
to a much lesser extent when they belong to the ‘isolated A′s’ subgroup. Finally,
this is also strengthened by the analysis of the DNA profiles obtained with a modi-
fied Pnuc coding table. This table is obtained by the shuffling of the Pnuc table and
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leads to a total vanishing of LRC (Figure 9(b)). These essential results demonstrate
that the LRC observed between bending sites are not a trivial consequence of the
existence of LRC between single nucleotides. On the opposite, we can propose
that the latter should rather be considered as resulting from LRC between bend-
ing sites. This does not mean that the Pnuc table allows the exact evaluation of
the ‘words’ which are long-range correlated in all DNA sequences. However, this
characterisation of the DNA bending sites issued from the analysis of nucleosomal
DNA provides the coding which, among others, most efficiently detects LRC in
genomic sequences. Along this line, we notice that the analysis of the C. elegans
genome with the ‘AA” (= ‘TT’) dinucleotide coding reveals larger H values than
with the ‘A’ (+ ‘T’) mononucleotide coding (Figure 10(c)). This suggests that the
contribution of AA dinucleotides to the formation of nucleosomes is increased in
C. elegans as compared to other eukaryotic genomes (Human, D. melanogaster, A.
thaliana, S. cerevisiae). This result can be paralleled with a previous work which
showed with the Fourier transform technique, that the spectral component corres-
ponding to AA (= TT) at the 10.2 bp periodicity is strongly enhanced in C. elegans
comparatively to S. cerevisiae [23].

4.4. WHAT MECHANISMS UNDERLY LRC IN GENOME SEQUENCES?

Although the analysis of LRC in genome sequences is still at an early stage, we
can tentatively put the grounds of such mechanisms. The perfectly well estab-
lished structure of nucleosomes dictates that the DNA sequence provides a proper
rotational orientation of the double helix around the core histone. It is admitted
that among the sequences that favour the formation of nucleosomes, those which
contribute significantly to their positioning display a characteristic periodicity of
about 10.2 bp, like for example the dinucleotides AA (=TT) and GG (=CC) which
are known to play a major role in the intrinsic bending and flexibility properties
of the DNA double helix [20, 23, 25, 26, 37, 43, 44, 45, 46, 47, 48]. Actually, it
has been estimated that only a small fraction of about 5% of the genome presents
this periodic sequence-directed nucleosome positioning properties, that are larger
than in the bulk genomic sequences. How sparsely are distributed these specific
regions in genomic DNA ? This is still an open question. Periodic signals have
been found in coding and non-coding sequences and are not restricted to partic-
ular regions as promoters [23]. Indeed, one cannot exclude the possibility that
the rather well positioned nucleosomes be concentrated in vast regions leading
to the formation of somehow distinct chromatin structures which may facilitate
DNA function in a chromatin context, i.e. the functioning of particular genes or
loci [24]. Since a large proportion (about 95%) of genomic DNA has a free energy
for nucleosome formation that little differs from that of random DNA, one may
be tempted to conclude that the DNA sequence has no appreciable influence on
nucleosome formation for the vast majority of them. This is probably true as far as
nucleosome positioning is concerned. What our analysis strongly suggests is that
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the LRC observed at small scales (< 200 bp) in eukaryotic genomes are mainly
devoted to the formation of the solenoidal supercoils of DNA in nucleosomes.
We thus propose that, on the contrary to the tight histone binding obtained with
an adequate periodic distribution of bending sites, LRC would allow the major
part of the genome to facilitate the left-handed superhelical wrapping of DNA,
whatever the positioning of the histone core. The fact that bending sites are long-
range correlated means that these sites are more likely spatially distributed on a
persistent Cantor set structure as sketched in Figures 1(b), 1(d) and 1(f). This
observation brings into light the possibility that the mechanisms underlying the
interactions between DNA and histones to form nucleosomes are multi-scale phe-
nomena that involve the interplay of all scales up to 100 − 200 bp. The presence
of LRC between bending sites might not only reflect some mechanical and struc-
tural ability of DNA to wrap around histones, but also some propensity of the
nucleosomes to be dynamical structures that could favour an optimal comprom-
ise between DNA compaction and accessibility constraints. During processes like
replication or transcription, the entire length of nucleosomal DNA is exposed (al-
though not necessarily all at once) to the polymerases. Processes of ‘site exposure’
more rapid than the characteristic time for nucleosome sliding has been presented
as an attractive model for the initial binding of regulatory proteins to nucleosomal
target sites [31, 143]. The observed LRC between bending sites might play a role in
the dynamical DNA peeling off the histone octamer surface as well as in the mech-
anisms by which the polymerases progress through nucleosomes. In this context,
we propose that the LRC would facilitate the translational mobility (sliding) of the
nucleosomes [144, 145, 146, 147, 148, 149, 150]. If one considers this mobility
as a diffusion mechanism along the DNA molecule, we can assume that the long-
range correlated distribution of bending sites exerts a direct effect on this diffusion
process. This effect effect might either increase the diffusion coefficient or lead to
abnormal diffusion process in which the average rms distance covered after a given
number of steps is larger than in classical Brownian motion. LRC between bending
sites would thus allow larger nucleosome displacement by ‘super-diffusive’ pro-
cesses. This property is reminiscent of the larger black and white segments induced
by the presence of LRC in Figures 1(b), 1(d) and 1(f) compared to Figures 1(a), 1(c)
and 1(e). The persistent nature of the scale invariant organisation of bending sites
would favour the overall dynamic of nucleosomes by allowing them to explore
larger DNA fragment. It would also offer an understanding of the modest free
energy of nucleosome formation observed for most DNA sequences.

Following this vision of LRC associated to the superhelical states of DNA, we
can enlarge the interpretation of our results to the LRC observed at large scales
(> 200 bp). This presence of strong large-scale LRC might favour the formation
of large solenoidal supercoils that would contribute to the supercoiling of chro-
matin. In eukaryotes, the LRC observed in the large-scale regime would favour the
regular supercoiling of interphase chromatin by condensin [56, 151, 152, 153].
We suggest that to some extent, this mechanism can be paralleled to the way
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small-scale LRC favour the supercoiling of nucleosomal DNA around the core
histone. Along this line, the LRC observed in the large-scale bacterial genomes
would, similarly as for eukaryotes, facilitate the supercoiling of DNA to achieve
the condensation-decondensation processes of chromatin. These hypotheses con-
stitute new directions for the study of the large-scale LRC and are currently under
investigation.

5. Materials and Methods

5.1. CODING DNA SEQUENCES FOR STRUCTURAL ANALYSIS

To apply numerical methods to a DNA sequence {ni} consisting of four nucleotides
A, G, T and C, one needs to map the corresponding text on a digital sequence {ui}.
In previous works [102, 115, 123], we have mainly used the three independent
binary mapping rules based on identifying two by two the four bases [72, 109].
For example, the purine-pyrimidine distinction rule amounts to code the purines
(A or G) by 1 and the pyrimidines (C or T) by −1. These binary codings have
proved to be very convenient to convert DNA sequences into ‘DNA walks’ using
ui as an incremental variable, the graph of the DNA walks being defined by the
cumulative variable f (k) = ∑k

i=1 ui [64, 102, 109]. Let us point out that the
Hurst exponent H defined in equations (2) and (8) actually characterizes the global
regularity properties of the fractal landscape of the graph f (k) of the considered
DNA walk [102].

In this work, we use different mapping rules based on the identification of
mono-, di- or tri-nucleotides. These codings are actually inspired from the binary
coding method extensively used by Voss [65, 67] and which consists in decom-
posing the nucleotide sequence into four sequences corresponding to A, G, T or C,
coding with 1 at the considered nucleotide positions and 0 at the other positions. To
investigate the scale-invariance properties of the fluctuations of the local bendab-
ility/bending distribution of DNA, we use specific trinucleotide codings which are
no longer binary codings since they consist in using the numerical values provided
by the Pnuc [51] and DNase [125] tables respectively.

5.1.1. Mononucleotide Coding Rules

As mentioned just above, one can define the ‘A’, ‘G’, ‘T’ and ‘C’ coding rules, by
putting 1 at the considered nucleotide positions and 0 at the other positions. These
mononucleotide codings allow us to study the way that each nucleotide A, G, T
and C is distributed along the DNA sequence.

With the specific goal to compare the statistical distribution of some isolated
nucleotides, e.g., the adenines that are not part of a dinucleotide AA, to the overall
distribution of the considered nucleotide, e.g. all adenines, we define the binary
coding rules ‘Aiso’, ‘Giso’, ‘Tiso’ and ‘Ciso’. These rules consist in coding by 1 at
the considered nucleotide positions provided the two nearest neighbour nucleotides
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be different from the considered nucleotide and 0 at the other positions. To improve
statistical convergence, we mainly report results obtained with the ‘Aiso’ (=‘Tiso’)
and ‘Giso’ (= ‘Ciso’) codings which respectively amount to code with 1 both the
isolated A and T on the one hand or both the isolated G and C on the other hand.

5.1.2. Dinucleotide Coding Rules

As alternative mapping rules, one can process DNA sequences looking for the
respective distributions of each one of the sixteen dinucleotides. In the present
study, we report results obtained with particular dinucleotides which are known to
participate to the positioning and formation of nucleosomes [26]. The ‘AA’, ‘GG’,
‘TT’ and ‘CC’ coding rules consist in coding with 1 at the considered nucleotide
positions provided at least one of the nearest neighbour nucleotides be the same
nucleotide and 0 at the other positions. Note that very much like for the isolated
mononucleotide coding rules and for the same reasons, most of the results reported
in this work correspond to using the ‘AA’ (= ‘TT’) and ‘GG’ (= ‘CC’) dinucleotide
codings.

5.1.3. Trinucleotide Coding Rules

In the context of the present study which is mainly devoted to extracting the struc-
tural information which is encoded in the primary DNA sequences, we consider
the two trinucleotide coding rules given by the Pnuc and DNase tables reported
respectively in [51] and [125]. As previously emphasized, these tables are likely to
provide pertinent codings of the local bending and flexibility properties of the DNA
double helix. The former is deduced from experimentally determined nucleosome
positioning [43]. The later is based on sensitivity of DNA fragments to the enzyme
DNase I [52, 154]. The ‘Pnuc’ and ‘DNase’ trinucleotide coding rules are thus
defined by coding the nucleotide ni at position i by the numerical value given
by either one of these tables for the trinucleotide defined by this nucleotide and its
two nearest neighbours, i.e., the triplet (ni−1, ni, ni+1). A complete coding of DNA
sequence is achieved by repeating this operation for all the positions i from 2 to
L − 1, where L is the overall length of the sequence.

5.2. DATA SETS

All genomes, chromosomes and contigs were down-loaded using either one of the
facilities offered at EBI (http://www.ebi.ac.uk) or at NCBI
(http://ncbi.nlm.nih.gov). The following sequences were analyzed, Homo
sapiens chromosome 21 (from NCBI); Danio rerio, AF112374; Drosophila melano-
gaster, AE002602; Caenorhabditis elegans chromosome 1 (from NCBI); Arabidop-
sis thaliana chromosome 2, AE002093; Saccharomyces cerevisiae 16 chromo-
somes: U00091, Y13136, Y13137, Y13138, Z71257, Y13139, Y13140, U00094,
Y13134, X59720, Z71256, U00092, D50617, Y13135, U00093, Z47047. For the
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family of Herpesviruses, 7 genomes were chosen in the subfamilies of Alpha-
herpesviruses, AJ004801, AF030027, X14112; Betaherpesviruses, X17403;
Gammaherpesviruses, AF005370, V01555; and one unclassified, AB049735. For
the Adenoviruses, 3 genomes were analyzed: human adenovirus type 5, M73260;
ovine adenovirus isolate 287, U40839; turkey adenovirus 3, AF074946. For the
Poxviruses, 2 genomes were studied: Vaccinia virus (strain Tan Tan), AF095689;
Melanoplus sanguinipes, AF063866. For positive single strand ssRNA viruses, 20
genomes were studied (all pairs presented less than 50% identity): AF022937,
D86371, M87512, M95169, Y10237, U15146, Y07862, X97251, U05771, U38304,
U27495, AF029248, M12294, AF039204, AF046869, AF056575, AF094612,
X04129, M31182, Y18420. For double strand RNA viruses, 4 genomes were chosen
in the families of Totiviruses, L13218, AF039080; Hypoviruses, AF082191; and
Cystoviruses, AF226851. For retroviruses, one genome was chosen in each of the
7 retrovirus genera: Lentiviruses, L07625; Spumaviruses, U21247; Mammalian
type B retroviruses, M15122; Mammalian type C retroviruses, M23385; Avian
type C retroviruses, J02342; D-type retroviruses, M12349; BLV-HTLV retroviruses,
K02120.

The following complete bacterial genomes and virus were analysed: Escheri-
chia coli, U00096; Rickettsia prowazekii, AJ235269; Helicobacter pylori,
AE000511; Chlamydia trachomatis, AE001273; Treponema pallidum, AE000520;
Mycoplasma pneumoniae, U00089; Bacillus subtilis, AL009126; Synechocystis
sp. PCC6803, AB001339; Thermotoga maritima, AE000512; Aquifex aeolicus,
AE000657; bacteriophage λ, J02459; bacteriophage T4, AF158101; bacteriophage
SPBc2, AF020713; Thermoplasma acidophilum, AL139299; Methanococcus jan-
nashii, L77117; Pyroccocus horikoshii (NCBI); Archaeoglobus fulgidus,
AE000782; Aeropyrum pernix, (NCBI); Sulfolobus solfataricus (directly from CBR
http://www.cbr.nrc.ca/).

For human exons and introns, we also present the results obtained after aver-
aging over several sequences. We extracted all human exons and introns from the
EMBL database release 57 and only kept a subset of sequences with a minimum
length of 600 bp for exons and 800 bp for introns and a maximum identity of 60%.
Moreover, only intron sequences starting with GT and finishing with AG were kept.
In the same manner, exon sequences were selected such that they were immediately
preceded by AG and followed by GT dinucleotides and with a clearly defined phase
(at least one stop codon in exactly two phases). These last criteria avoid selecting
the large non coding exons which can be found at both ends of gene sequences and
thus guaranties that we work on coding exons only. Overall 226 exons and 2184
introns were retained by this procedure.
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